Subsections


Discrete enstrophy conservation


Vorticity Term with ENS scheme (ln_dynvor_ens=.true.)

In the ENS scheme, the vorticity term is descretized as follows:

\begin{equation*}\left\{ \begin{aligned}+\frac{1}{e_{1u}} & \overline{q}^{ i} &...
...{2u} e_{3u}\; u \right) } } }^{ i+1/2, j} \end{aligned} \right.\end{equation*}

The scheme does not allow but the conservation of the total kinetic energy but the conservation of $ q^2$, the potential enstrophy for a horizontally non-divergent flow ($ i.e.$ when $ \chi $=0). Indeed, using the symmetry or skew symmetry properties of the operators (Eqs (4.12) and (4.11)), it can be shown that:

$\displaystyle \int_D {q \;{\textbf{k}}\cdot \frac{1} {e_3} \nabla \times \left( {e_3   q \;{\textbf{k}}\times {\textbf{U}}_h } \right)\;dv} \equiv 0$ (C.14)

where $ dv=e_1 e_2 e_3 \; di dj dk$ is the volume element. Indeed, using (C.13), the discrete form of the right hand side of (C.14) can be transformed as follow:

  $\displaystyle \int_D q  \; \textbf{k} \cdot \frac{1} {e_3 } \nabla \times \left( e_3   q \; \textbf{k} \times \textbf{U}_h \right)\; dv$    

Since $ \overline {\;\cdot \;} $ and $ \delta$ operators commute: $ \delta_{i+1/2}
\left[ {\overline a^{ i}} \right] = \overline {\delta_i \left[ a \right]}^{ i+1/2}$, and introducing the horizontal divergence $ \chi $, it becomes:


  $\displaystyle \qquad {\begin{array}{*{20}l} &\equiv \sum\limits_{i,j,k} q  \le...
...,j} \right] \right\} &&  \end{array} } \allowdisplaybreaks\allowdisplaybreaks$ $\displaystyle \qquad {\begin{array}{*{20}l} &\equiv \sum\limits_{i,j,k} - \frac...
...1t} e_{2t} e_{3t}^{}  \chi}}^{ i+1/2,j+1/2} \quad \equiv 0 && \end{array} }$    

The later equality is obtain only when the flow is horizontally non-divergent, $ i.e.$ $ \chi $=0.


Vorticity Term with EEN scheme (ln_dynvor_een=.true.)

With the EEN scheme, the vorticity terms are represented as:

\begin{equation*}\left\{ { \begin{aligned}+q e_3   v &\equiv +\frac{1}{e_{1u} ...
...e_{3u}  u \right)^{i+i_p}_{j+j_p-1/2}  \end{aligned} } \right.\end{equation*}

where the indices $ i_p$ and $ k_p$ take the following value: $ i_p = -1/2$ or $ 1/2$ and $ j_p = -1/2$ or $ 1/2$, and the vorticity triads, $ {^i_j}\mathbb{Q}^{i_p}_{j_p}$, defined at $ T$-point, are given by:

$\displaystyle _i^j \mathbb{Q}^{i_p}_{j_p} = \frac{1}{12}  \left( q^{i-i_p}_{j+j_p} + q^{i+j_p}_{j+i_p} + q^{i+i_p}_{j-j_p} \right)$ (C.16)

This formulation does conserve the potential enstrophy for a horizontally non-divergent flow ($ i.e.$ $ \chi=0$).

Let consider one of the vorticity triad, for example $ {^{i}_j}\mathbb{Q}^{+1/2}_{+1/2} $, similar manipulation can be done for the 3 others. The discrete form of the right hand side of (C.14) applied to this triad only can be transformed as follow:

  $\displaystyle \int_D {q \;{\textbf{k}}\cdot \frac{1} {e_3} \nabla \times \left( {e_3   q \;{\textbf{k}}\times {\textbf{U}}_h } \right)\;dv}$    
$\displaystyle \equiv$ $\displaystyle \sum\limits_{i,j,k} {q}  \biggl\{ \;\; \delta_{i+1/2} \left[ - ...
...} \left[ {{^i_j}\mathbb{Q}^{+1/2}_{+1/2} \; V^{i}_{j+1/2}} \right] \;\;\biggr\}$        
$\displaystyle \equiv$ $\displaystyle \sum\limits_{i,j,k} \biggl\{ \delta_i [q]  {{^i_j}\mathbb{Q}^{+1...
...j}} + \delta_j [q]  {{^i_j}\mathbb{Q}^{+1/2}_{+1/2} \; V^{i}_{j+1/2}} \biggr\}$        
$\displaystyle ...$      
  $\displaystyle Demonstation  to  be  done...$    
$\displaystyle ...$      
$\displaystyle \equiv$ $\displaystyle \frac{1} {2} \sum\limits_{i,j,k} \biggl\{ \delta_i \Bigl[ \left( ...
...{+1/2}_{+1/2}} \right)^2 \Bigr]\; \overline{\overline {V}}^{ i+1/2,j} \biggr\}$        
$\displaystyle \equiv$ $\displaystyle - \frac{1} {2} \sum\limits_{i,j,k} \left( {{^i_j}\mathbb{Q}^{+1/2...
...] + \delta_{j+1/2} \left[ \overline{\overline {V}}^{ i+1/2,j} \right] \biggr\}$        
$\displaystyle \equiv$ $\displaystyle \sum\limits_{i,j,k} - \frac{1} {2} \left( {{^i_j}\mathbb{Q}^{+1/2}_{+1/2}} \right)^2 \; \overline{\overline{ b_t^{}  \chi}}^{ i+1/2, j+1/2}$    
$\displaystyle \equiv$ $\displaystyle  0$    

Gurvan Madec and the NEMO Team
NEMO European Consortium2017-02-17